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Application of a Variation-|teration Method to W aveguides

with |nhomogeneous Lossy Loads

AUGUSTE A. LALOUX, sTuDENT MEMBER, 1EEE, RENE J. M. GOVAERTS, MEMBER, IEEE, AND
ANDRE S. VANDER VORST, SENIOR MEMBER, IEEE

Abstract—An approximate technique for solving eigenvalue equa-
tions, the variation~iteration method,is commonly used in theoretical
physics. A previous paper presented the application of this method
to the scalar case of a dielectric slab loaded rectangular waveguide.
This paper presents its extension to the complex vector case of a
lossy dielectric insert loaded waveguide.

Starting from an inijtial trial function, iterates are calculated in
which the components relative to the unwanted eigenfunctions are
eliminated. Both an upper and a lower bound for the unknown eigen-
values are available. Each iterate is the solution of a system of
algebraic simultaneous equations. This system is solved by the suc-
cessive overrelaxation method using an automatically computed
optimal accelerating factor. An extrapolation technique further ac-
celerates the convergence.

This yields the attenuation and propagation coefficients for the
dominant as well as several other modes, together with the electric
and magnetic field configurations.

I. INTRODUCTION

N A PREVIOUS PAPER [1], a computerized version
of the variation—iteration method, previously used in
theoretical physics was proposed. To check the validity
of the method, it was applied to the well-known problem
of the dielectric slab loaded waveguide. It was shown that
the variation—iteration technique offers many advantages
with respect to other procedures. It produces both an
upper and lower bound for the approximation of the ob-
tained solution, with respect to the exact unknown solu-
tion. An extrapolation technique may be used to accelerate
the convergence.

Rayleigh-Ritz and Galerkin procedures for waveguides
loaded with dielectric inserts have been used [2]-[6] but
the convergence of moment methods has been shown to
be a rather slow one [7] and alternate approaches are
needed (e.g., the modal technique [8]).

The purpose of the present paper is to extend the
variation—iteration procedure to vector problems (dielec-
tric inserts which do not extend across either of the wave-
guide transverse dimensions) and complex problems (lossy
loads).

In the first part, the basic outline of the variation—
iteration method is given. In the second part, the numerical
treatment is developed for the lossless case while the third
part is devoted to the lossy case.
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I1. Bast¢ OUTLINE OF THE VARIATION-ITERATION
PROCEDURE

The variation—iteration procedure for solving eigenvalue
equations is basically a particular case of the Wielandt
iteration method [97], [107] consisting of an iterative proc-
ess combined with a variational principle. This procedure
results in a method for systematically improving upon a
trial function, which converges towards the eigenfunction
of the problem while the eigenvalue is refined by a Ray-
leigh quotient. It produces both an upper and lower bound
for the eigenvalue. Only the basic outline of the method
will be given here; the reader interested in having more
details is referred to [11].

Using a formal operator notation, the eigenvalue prob-
lem 1s characterized by

&f = \WY. (1)

The sequence of unknown -eigenvalues A,(ho < M <
Ag < +++) corresponds to the eigenfunctions X,.

In this presentation, the eigenfunctions are supposed
to be real and scalar; the extension to the complex vector
case is straightforward.

Let fo be an initial trial function. We define the nth
iterate by

(2)

Notice that the factor \ is dropped; this means that in-
stead of solving an eigenvalue problem, one only calcu-
lates a function from another one (for each iterate). This
is the main advantage of the variation—iteration tech-
nique which avoids one of the inherent difficulties of an
eigenvalue problem.

Assuming that the eigenfunctions X, of the problem
form a complete set (this will always be the case if the
problem is self-adjoint or if the eigenvalues are real and
distinct [127), the trial function may be expanded:

fu = OB—liﬂlfn_l.

fo= 2 e X, (3)
Hence, from (1)-(3),
Cp
Ju = N X, (4)

which shows that, in the absence of a degeneracy (i.e.,
N = M), the set f. converges to the eigenfunction corre-
sponding to the lowest eigenvalue X, by elimination of
the unwanted components contained in the trial function
(in the complex case, the moduli have to be taken into
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.account). The greater the ratio \i/\, the faster the con-
vergence.
Defining the adjoint problem of (1) by

(5)
where £2 and 9M° are, respectively, the adjoints of £ and

N, and denoting by ( fi, f2) the scalar product of f1 and fs,
it can be shown that.

£aga p— Amaga

_ (&fg)
(91f,9%)

is a variational expression for the eigenvalues as a func-
tion of the eigenfunctions, presenting a stationary value
when f and g¢ are, respectively, the eigenfunctions of (1)
and (5). The various iterates may be inserted into (6).
This gives, after some rewriting, the following approxima-
tions to Ay (known as Rayleigh quotients):

(£fns9n") _ (N 1,90%)
(mfﬂ-gna) (mf"Jgna)

N (N sgn®)  (Mfnga®)
. =

(ML N fy02)  (Mfnr1,90%)

A (6)

)

)\o(n) =

(8)

When the operators are real and positive-definite, it
may be shown that the set \@ including both integral
and half-integrdl values of a forms a monotonic sequence
of decreasing values, approaching the exact value from

above if the produets c,¢,” all have the same sign (the ¢, -
BVD

are the coeflicients of expansion (3), the ¢, are the coeffi-
cients appearing in the expansion of ‘g,?).

If the problem is self-adjoint, ¢, = ¢,” and the monotonic
convergence is obtained. If the problem is not self-adjoint,
the signs of the ¢, and ¢,” depend upon the (arbitrary)
choice of the trial functions. Hence it may happen that
the sequence A\@ is not a monotonic one. However, while
performing the iterations, the components of f, relative
to the unwanted eigenfunctions are progressively elimi-
nated. When the iterations have proceeded so far that f,
is but a mixture of X, and X, a monotonic (increasing or
decreasing) convergence of the A¢® towards A\, does appear.
This emphasizes the importance of a good trial function.
In the complex case, there is no proof that the convergence
~ is monotonie, but in all the experimental résults, it ap-
pears to be so.

If the ratio M/Ao is close to unity, convergence may
become rather slow. An extrapolation is available [11]
for this case which permits the unknown eigenvalue to
be evaluated in spite of the slow convergence. Of course,
it may also be used whenever the convergence is satisfac-
tory, but it is usually not necessary.

An estimate for Ay may be used in the computation of
a lower bound for Ae. If three successive iterates are calcu-
lated and if the iterations have proceeded so far that
one has

)\0(n+1) }\o(n+3/2) < }\12

(9)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1974

then

N D (gttiay — )\o(n-|—312)))
(10)

(n+3/2) —
Ao > Ao (1 A2 — AR\

The higher order eigenvalues are evaluated by the same
procedure. They may be obtained either by starting from
trial functions orthogonal with all the lower order eigen-
functions or by orthogonalizing after each iteration with
all these eigenfunctions (Gram-Schmidt procedure). De-
fining an orthogonalizing function, linear in X; and X;
so that ‘

F(X:,X;) =0, forall ¢ = j (11)
it appears that » »
F(Xofo) = coF (Xo,Xo). (12)
The ¢yX, component may then be removed:
_ F(XO)fO)
(fo) Lo=Jo— Xo F(XoXo) (13)

Applying the variation-iteration method to ( fo) L, leads
to the lowest order eigenfunction present in ( fo) Lo, X1

II1. AppPLIcATION TO A WAVEGUIDE CONTAINING A
DieLecTric LossLess Inserr (Fia. 1)

It appears from Maxwell’s equations that the magnetic
field H may be expressed as the curl of a vector potential P

H = jweV X P (14)
which gives for the electric field
E = kP + V8 (15)

where S is an arbitrary scalar function and k¢* = w?uoe 18
the wavenumber in vacuum. Using Maxwell’s equations
and specifying the divergence of P yields the wave equa-
tion

P — (l e,.) V-P + k2P = 0. (16)

€r

In a similar way, E may be expressed as the curl of a
vector potential. It may be shown [137] that both formu-

}V

e a i
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2z

Fig. 1. Rectangular waveguide loaded with a dielectric insert.
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lations lead to identical solutions, the first one being
presented here because it is better suited to the case of a
dielectric load.

In the case of dielectric inserts with boundaries parallel
to the waveguide walls, the gradient Ve, is no longer de-
fined. This can be taken care of by using (16) with
Ve, = 0 for the homogeneous regions and introducing
interface conditions at the boundaries of these regions.

We now consider fields propagating along the z axis. We
can describe them by a potential P of the form [14]

P = (&sz(z;y) + ‘-!'yPy(x’y))e—” (17)

which separates the vector Helmholtz equation (16) into
two scalar equations

ViP,, + (e&ke* + )P,y = 0. (18)

At the waveguide walls, the vanishing of the tangential
components of the electric field written as a function of
P, and P, yields the following conditions:

aP,/oy = 0
8Px/a$ = 0.

horizontal metallic wall: P, = 0

vertical metallic wall: P, =0 (19)

At the dielectric interface, the continuity of the four tan-
gential field components implies the continuity of

aP, opP 1 /9P, aP,
Py Py (= +— )~ —+—>).
v <8y + ax) e,(ax + 6y>

(20)

A linear operator of the second order such as (16) is
always formally self-adjoint if the appropriate scalar
product is used. But the way the waveguide is divided
into homogeneous regions implies the interface conditions
(20), the last one being not self-adjoint. This fact will be
taken into account by using the generalized Rayleigh
quotient. The choice of P is, however, very helpful: it
yields boundary and interface conditions which do not
contain the eigenvalue. This is required for the use of the
variation—iteration method. This is not the case when
using, for instance, axially directed electric and magnetic
vector potentials.

Equation (18) has to be written in the form

LP = \mP. (21)

Among the various possible choices of £, 9, and A, it
seems more attractive to choose k? as the eigenvalue
because all eigenvalues will be positive for a given ~?
while for a given frequency, some modes may be evanes-
cent (y? > 0) and the other ones propagating (4% < 0).
Hence an adequate form for (21) is

(Vé+ )P = —eki’P (22)

in a homogeneous region, where P stands for P, or P,.
The propagation constant + is treated as a parameter; for
each value of v, the corresponding wave number k¢ is
calculated, yielding the dispersion characteristic of the
waveguide.
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The iteration equation (2) when applied to (22) re-
quires the solution of a system of two partial differential
equations with proper boundary and interface conditions.
As the problems we wish to solve are rather complicated
(bidimensional, vector, and complex with many inter-
faces), analytical methods do not appear to be the appro-
priate ones. Considering the isomorphism existing between
operators and their discretized representation as matrices
[167] as well as the geometry of the problem, one is led to
solve the whole problem by discretization. This will be
done according to the finite-difference procedure with a
square mesh and the eclassical five-point formula for the
representation of the Laplacian operator. The treatment
of the homogeneous Dirichlet and Neumann conditions
(19) on the metal boundaries is straightforward. The
interface conditions, however, are more difficult to deal
with. A horizontal dielectric interface for instance, im-
plies the continuity conditions (20). The first two condi-
tions are realized (in the finite-difference sense) by con-
sidering only one value of P, and P, for each point on the
interface. Writing the other two ‘continuity conditions
yields the equations to be verified by P, and P,. As an
example, the continuity of the fourth expression of (20)
will be treated here. With the notations of Fig. 2, one has

1
;;(PzE_P:oW"l_PyN_PyS(N))
N

1
= ’;(Pw — Puw + Pyw(8S) — Pys) (23)

where the notation P,s(N) shows that this point has to
be considered as belonging to medium N as if this medium
were extending outside of the interface. The unknown
values P,s(N) and P,y (S) are eliminated by writing the
limiting forms of (22) when the interface is approached
from both sides. Hence the iteration relation (2) takes
the form

{(PyE + PyW)em + 6NPyS + ESPyN - (Pa;E ha P:cW)

where e, = 1(exy + es). This condition introduces a cou-
pling between P, and P,.

- h25NES (PyP) ni—1

(24)

N mediumN

P €
< 7.
o
h
medium $
s -

X

Fig. 2. Horizontal dielectric interface.
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The same reasoning when applied to the continuity of
dP,/dy leads to an iteration relation which is the same as
in a homogeneous region with a permittivity e,.. This
shows that if the horizontal interfaces were the only ones
(this is the case for dielectric slabs), it would be possible
to compute P, alone and, from this, the values of P,: the
vector procedure is not necessary, the problem being
actually a scalar one. When both types of dielectric inter-
faces are present, corresponding equations are found for
P, and P,, and the two components have to be computed
simultaneously. The algebraic system to be solved for the
computation of each iterate can be written as follows:

i ; ] rPﬂl(l,l) 7 r ] FP:L(I,I)
AiB
Py Py
: —|u (25)
Pyay Pyay
C E D cee vee
| : i _Py (m,n)_In | _J_Py(m,n)Jn—l

where the M matrix is a diagonal one, and B (also C)
contains nonzero elements only on the lines corresponding
to points lying on a vertical (also horizontal) dielectric
interface.

The system (25) may be solved by direct matrix inver-
sion, taking advantage of the particular structure of
the matrix. The first results were obtained by using this
method. However, matrix inversion requires an important
memory space. This severely restricts the number of dis-
cretization points, hence the quality of the approximation.
As an example, an IBM 360/44 computer does not permit
a 20 X 40 mesh to be used without using magnetic tapes
or disks, which requires a nonnegligible time. To avoid
this drawback, iterative methods were developed for solv-
ing the system.

Since each iteration of the variation—iteration procedure
(contrary to alternate methods) only requires the com-
putation of a function from another one, there is no need
for the introduction of an estimate for the unknown eigen-
value: the diagonal dominance of (25) is then obtained
(except for points lying on the interfaces but this does
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compromise between ease of application and convergence
speed. Carré’s method [177] is used for evaluating the
optimum accelerating factor. The equations for both com-
ponents being almost uncoupled, it has been found advan-
tageous (although not indispensable) to compute two
different accelerating factors.

A special care has been devoted to this evaluation be-
cause once the accelerating factor is found for the first
iterate. it may be used unchanged for the other iterations,
the system matrix remaining unchanged. An original pro-
cedure allows the extrapolation of this factor to other
mesh sizes (modification of k) or to other points of the
dispersion characteristic (modification of 8) [137], [14].

The SOR method enables the computation of the suc-
cessive iterates converging to the eigenvector X,, from
which the electromagnetic fields are computed.

As stated before, the interface conditions coupling P,
and P, make the problem non-self-adjoint when both
types of interfaces are present. The use of (7) and (8)
requires the simultaneous solution of the adjoint problem.
This can be avoided by noticing that the following prop-
erty of the scalar products contained in the Rayleigh
quotients:

(mfmgma) = (mfn+ngm-r“) (26)

leads to

(mfmgna) = (mf%ngOa)' (27)

Since go* is an arbitrary trial function of the adjoint prob-
lem, it is clear that performing 2n iterations on the problem
or n iterations in parallel with » iterations on the adjoint
problem give the same results. The problem being almost
self-adjoint, the last computed iterate £, is a good estima-
tion for g¢®. This leads to the replacement of ¢,* in (7) and
(8) by f. but it must be kept in mind that the results
obtained after n iterations present the same quality as
those obtained with n/2 iterations on the problem and
n/2 on its adjoint (or n/2 iterations in the self-adjoint
case).

In matrix notation and with the classical sealar produet,
the generalized Rayleigh quotients are

J[ @en )P drdy + [[ (Prass )P dody

(28)

)\O(n) =

Jf ®atn ) dzdy + [[ (P3P, o ay

f f (Pont(M) P..) da dy + / / (Pt(M)P,) dz dy

AgPHUD —

(29)

J[ e D Py dzdy + [[ (Pyn M) P dady

not destroy the convergence) and methods as powerful
as the successive overrelaxation (SOR) method may be
applied. This method has been found to be a reasonable

where ¢ indicates the transposition and (M) the matrix
form of the operator 9 including the boundary and inter-
face conditions.
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Fig. 3. Transverse magnetic field for successive iterates, fo being
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In this non-self-adjoint case, the monotonic convergence
of the MA@ appears only after some iterations, depending
upon the choice of the trial vector.

In order to compute the higher order modes, it is pos-
sible to orthogonalize by using the fact that an eigen-
function corresponding to an eigenvalue A, is orthogonal
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to each eigenfunction of the adjoint problem which does
not correspond to \,*. By using the generalized Rayleigh
quotients, we can avoid solving the adjoint problem. It is
then possible to use more fundamental orthogonality
properties for fields in an inhomogeneous (but isotropic)
loaded waveguide:

[/ (B X H;)-d8 =0, ifi=j  (30)
which is easily written in terms of P, and P,.

It must be emphasized here that, in order to yield accu-
rate results, the orthogonalization has to be performed
upon lower order eigenfunctions obtained with a greater
aceuracy than previously required. The variational prop-
erty of the Rayleigh quotient was used indeed for the
evaluation of the corresponding eigenvalues. Hence more
iterations are required to refine the eigenfunctions if they
are to be used for orthogonalization. Moreover, each lower
order eigenfunction has to be stored. These two facts limit
the use of the method to 3 or 4 higher order modes, de-
pending upon the mesh size.

Fig. 3 shows the efficiency of the variation-iteration
method by representing the transverse magnetic field cor-
responding to successive iterates. Starting from a rather
complicated trial field, four iterations are enough to give
to the field its final form.

Tig. 4 shows the influence of the mesh used for the
calculation of the iterates. Classical techniques may be
used as the progressive mesh refining using as initial fune-
tion the (interpolated) solution of a coarser net. This
allows the economy of (time consuming) iterations on a
fine net by a supplement of (faster) iterations on a coarse
net. Furthermore, an extrapolation based on ‘Richard-
son’s deferred approach to the limit” leads to a better
value of the unknown solution by estimation of the dis-
cretization error.

Fig. 5 shows dispersion characteristics of a dielectric
loaded waveguide while Figs. 6-8 represent the transverse
magnetic fields of some modes of the structure.

IV. APPLICATION TO A WAVEGUIDE CONTAINING A
Dierectric Lossy INSERT

The variation-iteration method may be used in the
complex case [18] provided that the set of eigenfunctions
remains a complete one. The method then converges to
the eigenfunction corresponding to the eigenvalue pre-
senting the smallest modulus, the convergence rate being
given by | 1|/ | Ao |. The choice of the eigenvalue, how-
ever, has to be reviewed. v? is now a complex quantity
and it is no more possible to treat it as a parameter. One
has to calculate the complex eigenvalues v? corresponding
to given values of k2 (i.e., the frequency) and write (18)

under the form
(V2 + k)P = —y2P (31)

where ¢,, v%, and P are complex.
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(fae is the cutoff frequency of the dominant mode in the empty
guide).

Tig. 9 shows the dispersion characteristic of a waveguide
with an homogeneous lossless load in the (v2 k¢®) plane.
The procedure used in the lossless case corresponds to a
search for the successive modes on a vertical line (v), v2
being given: the dominant mode (A) is first found. In
the lossy case, the search proceeds along an horizontal
line (h), ks being the parameter. The smallest value of
| v | does not necessarily correspond to the dominant
mode (convergence towards B’ will occur at the first
time). It is necessary to shift the k? axis to the left, re-
placing v* by 4* + T, with T a complex constant, so that
v+ T|<|y2+ T|< ---. Equation (31) is then
replaced by

(V24 ek — TYP = —(y2 + T)P.

In an homogeneous region, the discretization of (32) gives
for the iteration relation

(Py + Ps + Pg + Pw — (4 — koe,h? + Th?) Pp),
= —h2(Pp)p.

(32)

(33)

It may be seen that, without shifting the eigenvalues,
there is no diagonal dominance and the SOR method does
not converge. This shift is thus required (fortunately in
the same direction) both by the variation-iteration pro-
cedure as well as the SOR method used for calculating
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Fig. 5. Dispersion characteristics of a dielectric loaded waveguide
(fie 1s the citoff frequency of the dominant mode in the empty
guide).
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the iterates. T' has to be chosen large enough to lead to a
converging relaxation procedure but as small as possible
to make the iteration procedure as fast as possible (the
eigenvalue shift reduces the ratio | A1| /| Ao | which de-
termines the convergence speed).

Fig. 10 shows that for small values of tan é (<0.01),
v? is almost real and it is quite easy to find a good estimate
for T. When tan § increases, the search for a reasonable
T becomes more difficult.

There are no major difficulties involved in solving the
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finite-difference system by the SOR procedure with a
complex accelerating factor [19]. As mentioned earlier,
it was found that the monotonic convergence appears
after some iterations as in the lossless case. Hence the
extension of the real procedure to the complex vector one
is rather straightforward. As in the real case, no pre-
liminary knowledge of the potential is required (except
for accelerating the convergence); an eigenvector corre-
sponding to a vector potential aligned with the z axis may
be obtained by starting from any trial function, the y
component vanishing during the first iterations. In the
complex case, the same property exists whatever the
“complex degree” of the trial potential—it may be real,
imaginary, or complex—the procedure will give it its defi-
nite characteristics.

When deseribing a dispersion characteristie, it is obvi-
ous that the use of the solution for a given point as the
trial vector for the next point accelerates the procedure.

Fig. 11 gives the dispersion characteristics of wave-
guides loaded with, respectively, a dielectric slab (tan 8 =
0.1) and a dielectric insert (tan § = 0.01). For the insert,
two different scales are used to amplify the small vari-
ations of « and 8.

V. CoNCLUSIONS

The variation-iteration method has been applied to
waveguides loaded with lossy dielectric inserts. Starting
from a complex initial trial function, an iteration tech-
nique rapidly eliminates the contribution from all eigen-
functions except the one with the lowest eigenvalue con-
tained in the trial function. The complex SOR method is
used to solve the partial differential equation giving each
iterate. A typical computation needing 6 iterates (this
depends strongly upon the quality of the initial function)
takes about 50 seconds (including the computation time
of the electromagnetic fields) on an IBM 370/155 when
a mesh size of about 40 X 30 is used for the computation
of the iterates.

It is the authors’ belief that this method makes the
exact solution of the complex vector Helmholtz equation
available. The required number of iterations never be-

| \\\_,’7

/=l T/

[ ),

’ X s ’ " 7]
- vt R
1(1-jtan § —
oh -jtan @) oh
..m !3"——.*—"——-
tan§: 01 " tendeam
Fig. 11. Dispersion characteristics of loaded waveguides (fg. is the

cutoff frequency of the dominant mode in the empty guide).
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comes prohibitively large because of the high speed of
convergence.

It is to be noticed here that the fields are easily ealcu-
lated and that the concentration of the fields in the di-
electric load can be evaluated as a function of the dielectric
constant and of the frequency. Hence breakdown, for
instance, can be calculated as well as the geometry of a
detector to be used in a loaded waveguide. The waveguide
impedance concept may be explored. A complete study
of the backward modes is presently in progress. The
method has also been used to study the problem of wave-
guides loaded with a strip conductor on a dielectric sub-
strate [14]. The waveguide modes of the structure are
easily computed by the described procedure, but the
quasi-TEM mode needs a more intricate formulation. The
extension of the procedure to anisotropic loads is presently
planned.
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