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Abstract—An approximate technique for solving eigenvalue equa-
tions, the variation-iteration method,is commonly used in theoretics
physics. A previous paper presented the application of this method
to the scalar case of a dielectric slab loaded rectangular waveguide.

‘His paper presents its extension to the complex vector case of a

lossy dielectric insert loaded waveguide.

Starting from an initial trial function, iterates are calculated in

which the components relative to the unwanted eigenfunctions are

eliminated. Both an upper and a lower bound for the unknown eigen-
values are available. Each iterate is the solution of a system of
algebraic simultaneous equations. This system is solved by the suc-
cessive overrelaxation method using an automatically computed
optimal accelerating factor. An extrapolation technique further ac-
celerates the convergence.

This yields the attenuation and propagation coefficients for the
dominant as well as seversf other modes, together with the electric
and magnetic field configurations.

I. INTRODUCTION

I N A PREVIOUS PAPER [1], a computerized version

of the variation–iteration method, previously used in

theoretical physics was proposed. To check the validity

of the method, it was applied to the well-known problem

of the dielectric slab loaded w+veguide. It was shown that

the variation-iteration technique offers many advantages

with respect to other procedures. It produces both an

upper and lower bound for the approximation of the ob-

tained solution, with respect to the exact unknown solu-

tion. An extrapolation technique maybe used to accelerate

the convergence.

Rayleigh-Ritz and Galerkin procedures for waveguides

loaded with dielectric inserts have been used [2]-[6] but

the convergence of moment methods has been shown to

be a rather slow one [7] and alternate approaches are

needed (e.g., the modal technique [8]).

The purpose of the present paper is to extend the

variation-iteration procedure to vector problems (dielec-

tric inserts which do not extend across either of the wave-

guide transverse dimensions) and complex problems (lossy

loads).

In the first part, the basic outline of the variation–

iteration method is given. In the second part, the numerical

treatment is developed for the lossless case while the third

part is devoted to the 10SSYcase.
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11. BASIC OUTLINE OF THE VARIATION–ITERATION

PROCEDURE

The variation-iteration procedure for solving eigenvalue

equations is basically a particular case of “the Wielandt

iteration method [9], [10] consisting of an iterative proc-

ess combined with a variational principle. Thk procedure
results in a method for systematically improving upon a

trial function, which converges towards the eigenfunction

of the problem while the eigenvalue is refined by a lRay-

leigh quotient. It produces both an upper and lower bound

for the eigenvalue. Only the basic outline of the method

will be given here; the” reader interested in having more

details is referred to [11].

Using a formal operator notation, the eigenvalue prob-

lem is characterized by

.&j = W@. (1)

The sequence of unknown eigenvalues X, (ko < AI <

AZ < . . . ) corresponds to the eigenfunctions X,.

In this presentation, the eigenfunctions are supposed

to be real and scalar; the extension to the complex vector

case is straightforward.

Let ~0 be an initial trial function. We define the nth

iterate by

j. = s-%ltj._,. (2)

Notice that the factor h is dropped; this means that in-

stead of solving an eigenvalue problem, one only calcu-

lates a function from another one (for each iterate). This

is the main advantage of the variation–iteration tech-

nique which avoids one of the inherent difficulties of an

eigenvalue problem.

Assuming that the eigenfunctions X, of the problem

form a complete set (this will always be the case if the

problem is self-adjoint or if the eigenvalues are reall and

distinct [12] ), the trial function maybe expanded:

f, = ~ CPX*. (3)

Hence, from (1)-(3),

fn=x; xp (4)
P

which shows that, in the absence of a degeneracy (i.e.,

h = x1), the set f. converges to the eigenfunction Corre

spending to the lowest eigenvalue XO by elimination of

the unwanted components cent ained in the trial function

(in the complex case, the moduli have to be taken. into
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account). The greater the ratio Mo, the faster the con-

vergence.

Defining the adjoint problem of (1) by

$“g” = Am”g” (5)

where & and ~“ are, respectively, the adj oints of s and

~, and denoting by ( jl, jz) the scalar product of fl andfz,
it can be shown that

(6)

is a variational expression for the eigenvalues as a func-

tion of the eigenfunctions, presenting a, stationary value

when f and ~ are, respectively, the eigenfunctions of (1)

and (5). The various iterates may be inserted into (6).

This gives, after some rewriting, the following approxima-

tions to XO(known as Rayleigh quotients):

~o(n, = (J3fn,gn”) (mzf.-l,g?z”)

(mf.,9.a) = (mfn,9na)
(7)

(mfn,g.”) (mfn,97ta)

‘0(”+”2) = (WuHni&,g.”) = (mfn+l,gna) “
(8)

When the operators are real and positive-definite, it

may be shown that the set Xota) including both integral

and half-integral values of a forms a monotonic sequence

of decreasing values, approaching the exact value from

above if the products CPCP’all have the same sign (the Cp

are the coefficients of expansion (3), the CP’are the coeiii-

cients appearing in the expansion of go”).

If the problem is self-adjoint, c, = c,’ and the monotonic

convergence is obtained. If the problem is not self-adj oint,

the signs of the c, and c,’ depend upon the (arbitrary)

choice of the trial functions. Hence it may happen that

the sequence lo(”) is not a monotonic one. However, while

performing the iterations, the components of f. relative

to the unwanted eigenfunctions are progressively elimi-

nated. When the iterations have proceeded so far that f.

is but a mixture of X. and Xl, a monotonic (increasing or

decreasing ) convergence of the Xo(a)towards X. does appear.

This emphasizes the importance of a good trial function.

In the complex case, there is no proof that the convergence

is monotonic, but in all the experimental rt%ults, it ap-

pears to be so.

If the ratio kl/Ao is close to unity, convergence may

become rather slow. An extrapolation is available [11]

for this case which permits the unknown eigenvalue to

be evaluated in spite of the slow convergence. Of course,

it may also be used whenever the convergence is satisfac-

tory, but it is usually not necessary.

An estimate for Xl may be used in the computation of

a lower bound for Ao. If three successive iterates are calcu-

lated and if the iterations have proceeded so far that

one has

~o(n+l)Ao(n+3/2) < ~j (9)

then

(
xi) > AO(”+312) 1 —

~o(m+n(AO(72+V2)– Ao(n+wz))

M — ko(fi+s%o(~+l) )
. (lo)

The higher order eigenvalues are evaluated by the same

procedure. They may be obtained either by starting from

trial functions orthogonal with all the lower order eigen-

functions or by orthogonalizing after each iteration with

all these eigenfunctions ( Gram–Schmidt procedure). De-

fining an orthogonalizing function, liiear in Xi and Xj

so that

F(xi,xj) = o, for all i # j (11)

it appears that

F(xo,fo) = Cill’(xo,xo) .

The COXOcomponent may then be removed:

F(XO,fo)
( fo) 10 = fo – Xo F(xo,xo) .

Applying the variation–iteration method to

(12)

(13)

( fo) LO leads

to ~h~ lo-west order eigenfunction present in ( fo) LO,XI.

III. APPLICATION TO A WAVEGUIDE CONTAINING A

DIELECTRIC LOSSLESS INSERT (FIG. 1)

It appears from Maxwell’s equations that the magnetic

field ~ maybe expressed as the curl of a vector potential ~

H = j.wllvx F (14)

which gives for the electtic field

E = ko’~ + VS (15)

where S is an arbitrary scalar function and k$ = OYWOis

the wavenumber in vacuum. Using Maxwell’s equations

and specifying the divergence of ~ yields the wave equa-

tion

()
VP – ~ Ve, V.P + crko’F = o. (16)

%

In a similar way, E may be expressed as the curl of a

vector potential. It may be shown [13] that both formu-

/:/ L—-----a ---------- ------
Fig. 1. Rectangular waveguide loaded with a dielectric insert.
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lations lead to identical solutions, the first one being

presented here because it is better suited to the case of a

dielectric load.

In the case of dielectric inserts with boundaries parallel

to the waveguide walls, the gradient Ve, is no longer de-

fined. This can be taken care of by using (16) with

Ve, = Q for the homogeneous regions and introducing

interface conditions at the boundaries of these regions.

We now consider fields propagating along the z axis. We

can describe them by a potential ~ of the form [14]

P = (;ZPZ(Z,U) + &PV(X,V) )e–~’ (17)

which separates the vector Helmholtz equation (16) into

two scalar equations

V~Pz,U + (e,kOz+ T2)P,,V = O. (18)

At the waveguide walk, the vanishing of the tangential

components of the electric field written as a function of

P. and Pv yields the following conditions:

horizontal metallic wall: P. = O wv/ay = o

vertical metallic wall: Pv=o aP,/ax = o. (19)

At the dielectric interface, the continuity of the four tan-

gential field components implies the continuity of

A linear operator of the second order such as (16) is

always formally self-adj oint if the appropriate scalar

product is used. But the way the waveguide is divided

into homogeneous regions implies the interface conditions

(20) , the last one being not self-adjoint. This fact will be

taken into account by using the generalized Rayleigh

quotient. The choice of ~ is, however, very helpful: it

yields boundary and interface conditions which do not

contain the eigenvalue. This is required for the use of the

variation–iteration method. This is not the case when

using, for instance, axially directed electric and magnetic

vector potentials.

Equation (18) has to be written in the form

4.X = M@. (21)

Among the various possible choices of & ~, and h it

seems more attractive to choose lc02 as the eigenvalue

because all eigenvalues will be positive for a given Y2,

while for a given frequency, some modes may be evanes-

cent (72 > O) and the other ones propagating (Y2 < O).

Hence an adequate form for (21) is

(v? + 7’)P = –e,lcL1’P (22)

in a homogeneous region, where P stands for P. or Pu.

The propagation constant T is treated as a parameter; for

each value of V, the corresponding wave number koz is

calculated, yielding the dispersion characteristic of the

waveguide.

The’ iteration equation (2) when applied to (22) re-

quires the solution of a system of two partial differential

equations with proper boundary and interface conditions.

As the problems we wish to solve are rather complicated

(bidimensional, vector, and complex with many inter-

faces), analytical methods do not appear to be the appro-

priate ones. Considering the isomorphkm existing between

operators and their discretized representation as matrices

[16] as well as the geometry of the problem, one is led to

solve the whole problem by discretization. This will be

done according to the finite-difference procedure with a

square mesh and the classical five-point formula for the

representation of the Laplacian operator. The treatment

of the homogeneous Dirichlet and Neumann conditions

(19) on the metal boundaries is straightforward. The

interface conditions, however, are more difficult to deal

with. A horizontal dielectric interface for instance, imp-

lies the continuity conditions (20). The first two condi-

tions are realized (in the finite-difference sense) by con-

sidering only one value of P. and Pu for each point m the

interface. Writing the other two ‘continuity conditions

yields the equations to be verified by P, and Pg. A,s an

example, the continuity of the fourth expression of (20)

will be treated here. With the notations of Fig. 2, one has

A(p.. – Pzw + P,N – P.s(N) )

= L (Pm. – PzW + PUN(N) – Pws) (23)
es

where the notation PUS (N) shows that this point has to

be considered as belonging to medium N as if this medium

were extending outside of the interface. The unknown

values PUS (N) and F’vN ( 8) are eliminated b Writhg the

limiting forms of (22) when the interface is approached

from both sides. Hence the iteration relation (2) takes

the form

()EN— Es
. — — c.(4 — y2h2)Pup

}
= – hzew (Pvr) ,+1

2 n

(24)

where em = %(w + Q). This condition introduces a cou-

pling between Pz and Pg.

JIN medium N

I_._._J ]. ‘edi”ms
Fig. 2. Horizontal dielectric interface.
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The same reasoning when applied to the continuity of

dP./3y leads to an iteration relation which is the same as

in a homogeneous region with a permittivit y em. This

shows that if the horizontal interfaces were the only ones

(this is the case for dielectric slabs), it would be possible

to compute P. alone and, from this, the values of P,: the

vector procedure is not necessary, the problem being

actually a scalar one. When both types of dielectric inter-

faces are present, corresponding equations are found for

Pz and Pu, and the two components have to be computed

simultaneously. The algebraic system to be solved for the

computation of each iterate can be written as follows:

!-!
:“

A~B

—---

C~D

,-

“Pz(l,l)
. . .

Pz(m,m)1.-——-=
Pv(l,l)

. . .

J,Pu(m,n) n

-Pz(l,l) -
. . .

P.(m,. )

Pv(l,l)
. . .

. .pu(m,~)-

where the’ M matrix is a diagonal one, and B (also C)

M (25)

–1

contains nonzero elements only on the lines corresponding

to points lying on a vertical (also horizontal) dielectric

interface.

The system (25) may be solved by direct matrix inver-

sion, taking advantage of the particular structure of

the matrix. The first results were obtained by using this

method. However, matrix inversion requires an important

memory space. This severely restricts the number of dis-

cretization points, hence the quality of the approximation.

As an example, an IBM 360/44 computer does not permit

a 20 X 40 mesh to be used without using magnetic tapes

or disks, which requires a nonnegligible time. To avoid

this drawback, iterative methods were developed for solv-

ing the system.

Since each iteration of the variation-iteration procedure

(contrary to alternate methods) only requires the com-

putation of a function from another one, there is no need

for the introduction of an estimate for the unknown eigen-

value: the diagonal dominance of (25) is then obtained

(except for points lying on the interfaces but this does

compromise between ease of application and convergence

speed. Carr6’s method [17] is used for evaluating the

optimum accelerating factor. The equations for both com-

ponents being almost uncoupled, it has been found advan-

tageous (although not indispensable) to compute two

different accelerating factors.

A special care has been devoted to this evaluation be-

cause once the accelerating factor is found for the first

iterate, it may be used unchanged for the other iterations,

the system matrix remaining unchanged. An original pro-

cedure allows the extrapolation of this factor to other

mesh sizes (modification of h) or to other points of the

dispersion characteristic (modification of ~) [13], [14].

The SOR method enables the computation of the suc-

cessive iterates converging to the eigenvector Xo, from

which the electromagnetic fields are computed.

As stated before, the interface conditions coupling P.

and Pv make the problem non-self-adjoint when both

types of interfaces are present. The use of (7) and (8)

requires the simultaneous solution of the adj oint problem.

This can be avoided by noticing that the following prop-

erty of the scalar products contained in the Rayleigh

quotients:

(m&9ma) = (mifn+r,g-ra) (26)

leads to

(W-.,g.a) = (’3Kj2n,goa)- (27)

Since go” is an arbitrary trial function of the adjoint prob-

lem, it is clear that performing 2n iterations on the problem

or n iterations in parallel with n iterations on the adj oint

problem give the same results. The problem being ahnost

self-adjoint, the last computed iterate j. is a good estima-

tion for g,”. This leads to the replacement of g.” in (7) and

(8) by fm but it must be kept in mind that the results

obtained after n iterations present the same quality as

those obtained with n/2 iterations on the problem and

n/2 on its adj oint (or n/2 iterations in the self-adj oint

case).

In matrix notation and with the classical scalar product,

the generalized Rayleigh quotients are

~~ (P=(n_l)’(M)PzJ dx dy + // (PU(.-l)’(M)PVJ dx dy

~o(n) = (28)

Jf (Pzn’(M)PJ dx dy + JJ (Pun’ (M)PJ dx dy

JJ (P..’(M) p..) dx dy + JJ (p,.’ (M)P,.) dx dy

~O(n+Uz)s

/J(P.(.+1)’(M)P..)dx@+/J(P,(.+1)’(WP,.)dxdy
(29)

not destroy the convergence) and methods as powerful where t indicates the transposition and (M) the matrix
as the successive overrelaxation (SOR) method may be form of the operator ~ including the boundary and inter-
applied. This method has been found to be a reasonable face conditions.
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Fig. 3. Transverse magnetic field for successive iterates, fO being
the trial field (only the ABCD section of the guide is repre-
sented).

In this non-self-adjoint case, the monotonic convergence

of the Ao@) appears only after some iterations, depending

upon the choice of the trial vector.

In order to compute the higher order modes, it is pos-

sible to orthogonalize by using the fact that an eigen-

function corresponding to an eigenvalue ~. is orthogonal

to each eigenfunction of the adjoint problem which does

not correspond to &*. By using the generalized Rayleigh

quotients, we can avoid solving the adjoint problem. It is

then possible to use

properties for fields in

loaded waveguide:

more fundamental orthogonalit y

an inhomogeneous (but isotropic)

which is easily written in terms of Pz and Pu.

It must be emphasized here that, in order to yield accu-

rate results, the orthogonalization has to be performed

upon lower order eigcnfunctions obtained with a greater

accuracy than previously required. The variational prop-

erty of the Rayleigh quotient was used indeed for the

evaluation of the corresponding eigenvalues. Hence more

iterations are required to refine the eigenfunctions if they

are to be used for orthogonalization. Moreover, each 1ower

order eigenfunction has to be stored. These two facts limit

the use of the method to 3 or 4 higher order modes, de-

pending upon the mesh size.

Fig. 3 shows the efficiency of the variation–iteration

method by representing the transverse magnetic fieldl cor-

responding to successive iterates. Starting from a rather

complicated trial field, four iterations are enough to give

to the field its final form.

Fig. 4 shows the influence of the mesh used for the

calculation of the iterates. Classical techniques may be

used as the progressive mesh refining using as initial -func-

tion the (interpolated) solution of a coarser net. This

allows the economy of (time consuming) iterations on a

fine net by a supplement of (faster) iterations on a coarse

net. Furthermore, an extrapolation based on “Richard-

son’s deferred approach to the limit” leads to a better

value of the unknown solution by estimation of the dis-

cretization error.

Fig. 5 shows dispersion characteristics of a dielectric

loaded waveguide while Figs. *8 represent the transverse

magnetic fields of some modes of the structure.

IV. APPLICATION TO A WAVEGUIDE CONTAINING A

DIELECTRIC LossY INSERT

The variation-iteration method may be used in the

complex case [18] provided that the set of eigenfunctions

remains a complete one. The method then converges to

the eigenfunction corresponding to the eigenvalue pre-

senting the smallest modulus, the convergence rate being

given by I kl I / [ XO1. The choice of the eigenvalue) how-

ever, has to be reviewed. Yz is now a complex quantity

and it is no more possible to treat it as a parameter. One

has to calculate the complex eigenvalues y’ corresponding

to given values of J%Z(i.e., the frequency) and write (18)

under the form

(v? + .,ko’)F = –W (31)

where e,, -Y2,and ~ are complex.
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I?ig. 9 shows the dispersion characteristic of a waveguide

with an homogeneous lossless load in the (Y2, ko2) plane.

The procedure used in the lossless case corresponds to a

seareh for the successive modes on a vertical line (v), yz

being given: the dominant mode (A) is first found. In

the lossy case, the search proceeds along an horizontal

line (h), iio’ being the parameter. The smallest value of

I Y’ I does not necessarily correspond to the dominant
mode (convergence towards B’ will occur at the first

time). It is necessary to shift the ~02 axis to the left, re-

placing y2 by Y2 + T, with T a complex constant, so that

IY02-FT I<] Y12+TI <O””. Equation (31) is
replaced by

(V? -1-e,h? – T)~ = –(72+ l’)~.

In an homogeneous region, the discretization of (32)

for the iteration relation

(Piv + Ps + P. + PTV – (4 – k&,h2 + Th2)Pp)n

—— –h2(Pp).–l.

then

(32)

gives

(33)

It may be seen that, without shifting the eigenvalues,

there is no diagonal dominance and the SOR method does

not converge. This shift is thus required (fortunately in

the same direction) both by the variation–iteration pro-

cedure as well as the SOR method used for calculating

la

f /f~e
—

Fig. 5. Dispersion characteristics of a d@ectric loaded waveguide

(j~, k the cutoff frequency of the dommant mode k the empty

guide).

t
,,. /./ —/ 1.

I

Fig. 6. Transverse magnetic field for the A mode of Fig. 5.
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Fig. 7. Transverse magnetic field for the B mode of Fig. 5.
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Fig. 8. Transverse magnetic field for the C mode of Fig. 5.
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Fig. 9. (T’,ko’) plane for a w;::uide with homogeneous lossless

the iterates. T has to be chosen large enough to lead to a

converging relaxation procedure but as small as possible

to make the iteration procedure as fast as possible (the

eigenvalue shift reduces the ratio I Xl I / I ~. \ which de-

termines the convergence speed).

Fig. 10 shows that for small values of tan 6 ( <0.01),

y2 is almost real and it is quite easy to find a good estimate

for T. When tan 8 increases, the search for a reasonable

T becomes more dMicult.

There are no major difficulties involved in solving the

Im [J]’

r]’

Fig. 10. Complex values of 72 in function of tan &

finite-difference system by the SOR procedure with a

complex accelerating factor [19]. As mentioned earlier,

it was found that the monotonic convergence appears

after some iterations as in the lossless case. Hence the

extension of the real procedure to the complex vector one

is rather straightforward. As in the real case, no pre-

liminary knowledge of the potential is required (except

for accelerating the convergence) ; an eigenvector corre-

sponding to a vector potential aligned with the x axis may

be obtained by starting from any trial function, the y

component vanishing during the first iterations. In the

complex case, the same property exists whatever the

“complex degree” of the trial potential—it may be real,

imaginary, or complex—the procedure will give it its clefi-

nite characteristics.

When describing a dispersion characteristic, it is olkwi-

ous that the use of the solution for a given point as the

trial vector for the next point accelerates the procedure.

Fig. 11 gives the dispersion characteristics of wave-

guides loaded with, respectively, a dielectric slab (tan } =

0.1) and a dielectric insert (tan 8 = 0.01). For the insert,

two different scales are used to amplify the small vari-

ations of a and D.

V. CONCLUSIONS

The variation–iteration method has been applied to

waveguides loaded with loss y dielectric inserts. Starting

from a complex initia,l trial function, an iteration tech-

nique rapidly eliminates the contribution from all eigen-

functions except the one with the lowest eigenvalue con-

tained in the trial function. The complex SOR method is

used to solve the partial differential equation giving each

iterate. A typical computation needing 6 iterates (this

depends strongly upon the quality of the initial function)

takes about 50 seconds (including the computation time

of the electromagnetic fields) on an IBM 370/1.5.5 when

a mesh size of about 40 X 30 is used for the computation

of the iterates.

It is the authors’ belief that this method makes the

exact solution of the complex vector Helmholtz equation

available. The required number of iterations never be-

.

I

I

0 1.4 0.:

1

5

4

3

1

t

IE!
Wam! St

\ ,-/
L-— ,---- -!\
II \

._.’
a8

1;

-+

+,~-* , ‘
~-” f/f

I S.4 u

Er ,

111-jtm$l

tanfz 1.1 tm 6. u!

Fig. 11. Dispersion characteristics of loaded waveguides (.f~~ is the
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comes prohibitively large because of the high speed of

convergence.

It istobenoticed here that the fields are easily calcu-

lated and that the concentration of the fields in the di-

electric load can be evaluated as a function of the dielectric

constant and of the frequency. Hence breakdown, for

instance, can be calculated as well as the geometry of a

detector to be used in a loaded waveguide. The waveguide

impedance concept may be explored. A complete study

of the backward modes is presently in progress.. The

method has also been used to study the problem of wave-

guides loaded with a strip conductor on a dielectric sub-

strate [14]. The waveguide modes of the structure are

easily computed by the described procedure, but the

quasi-TEM mode needs a more intricate formulation. The

extension of the procedure to anisotropic loads is presently

planned.
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